Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 19(4): 455-462, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38225358

RESUMO

A light field carrying multidimensional optical information, including but not limited to polarization, intensity and wavelength, is essential for numerous applications such as environmental monitoring, thermal imaging, medical diagnosis and free-space communications. Simultaneous acquisition of this multidimensional information could provide comprehensive insights for understanding complex environments but remains a challenge. Here we demonstrate a multidimensional optical information detection device based on zero-bias double twisted black arsenic-phosphorus homojunctions, where the photoresponse is dominated by the photothermoelectric effect. By using a bipolar and phase-offset polarization photoresponse, the device operated in the mid-infrared range can simultaneously detect both the polarization angle and incident intensity information through direct measurement of the photocurrents in the double twisted black arsenic-phosphorus homojunctions. The device's responsivity makes it possible to retrieve wavelength information, typically perceived as difficult to obtain. Moreover, the device exhibits an electrically tunable polarization photoresponse, enabling precise distinction of polarization angles under low-intensity light exposure. These demonstrations offer a promising approach for simultaneous detection of multidimensional optical information, indicating potential for diverse photonic applications.

3.
Mater Horiz ; 10(12): 5950-5961, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37882244

RESUMO

Organic upconversion devices (UCDs) are a cutting-edge technology and hot topic because of their advantages of low cost and convenience in the important applications of near-infrared (NIR) detection and imaging. However, to realize utilization of triplet excitons (T1), previous UCDs have the drawback of heavily relying on toxic and costly heavy-metal-doped emitters. More importantly, due to poor performance of the detecting unit and/or emitting unit, improving their detectivity (D*) and photon-to-photon conversion efficiency (ηp-p) is still a challenge for real applications. Here, we report a high-performance dual-functional purely organic UCD that has an outstanding D* approaching 1013 Jones and a high ηp-p of 20.1% in the NIR region, which are some of the highest values among those reported for UCDs. The high performance is credited to the excellent D* of the detecting unit, exceeding 1014 Jones, and is also attributed to efficient T1 utilization via a dual reverse intersystem crossing channel and high optical out coupling achieved via a high horizontal dipole ratio in the emitting unit. The high D* and ηp-p enable the UCD to detect 850 nm light at as little as 0.29 µW cm-2 and with a high display contrast of over 70 000 : 1, significantly improving the potential of practical applications of UCDs in NIR detection and imaging. Furthermore, a fast rise time and fall time of 8.9 and 14.8 µs are also achieved. Benefiting from the high performance, consequent applications of low-power pulse-state monitoring and fine-structure bio-imaging are successfully realized with high quality results by using our organic UCDs. These results demonstrate that our design not only eliminates dependence of UCDs on heavy-metal emitters, but also takes their performance and applications to a high level.

4.
Adv Mater ; 35(46): e2305594, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37740257

RESUMO

Detecting and distinguishing light polarization states, one of the most basic elements of optical fields, have significant importance in both scientific studies and industry applications. Artificially fabricated structures, e.g., metasurfaces with anisotropic absorptions, have shown the capabilities of detecting polarization light and controlling. However, their operations mainly rely on resonant absorptions based on structural designs that are usually narrow bands. Here, a mid-infrared (MIR) broadband polarization photodetector with high PRs and wavelength-dependent polarities using a 2D anisotropic/isotropic Nb2 GeTe4 /MoS2 van der Waals (vdWs) heterostructure is demonstrated. It is shown that the photodetector exhibits high PRs of 48 and 34 at 4.6  and 11.0 µm wavelengths, respectively, and even a negative PR of -3.38 for 3.7 µm under the zero bias condition at room temperature. Such interesting results can be attributed to the superimposed effects of a photovoltaic (PV) mechanism in the Nb2 GeTe4 /MoS2 hetero-junction region and a bolometric mechanism in the MoS2 layer. Furthermore, the photodetector demonstrates its effectiveness in bipolar and unipolar polarization encoding communications and polarization imaging enabled by its unique and high PRs.

5.
Nat Commun ; 14(1): 1938, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024508

RESUMO

Infrared machine vision system for object perception and recognition is becoming increasingly important in the Internet of Things era. However, the current system suffers from bulkiness and inefficiency as compared to the human retina with the intelligent and compact neural architecture. Here, we present a retina-inspired mid-infrared (MIR) optoelectronic device based on a two-dimensional (2D) heterostructure for simultaneous data perception and encoding. A single device can perceive the illumination intensity of a MIR stimulus signal, while encoding the intensity into a spike train based on a rate encoding algorithm for subsequent neuromorphic computing with the assistance of an all-optical excitation mechanism, a stochastic near-infrared (NIR) sampling terminal. The device features wide dynamic working range, high encoding precision, and flexible adaption ability to the MIR intensity. Moreover, an inference accuracy more than 96% to MIR MNIST data set encoded by the device is achieved using a trained spiking neural network (SNN).

6.
ACS Nano ; 17(3): 2148-2158, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36706067

RESUMO

Nonlinear optical activities (e.g., harmonic generations) in two-dimensional (2D) layered materials have attracted much attention due to the great promise in diverse optoelectronic applications such as nonlinear optical modulators, nonreciprocal optical device, and nonlinear optical imaging. Exploration of nonlinear optical response (e.g., frequency conversion) in the infrared, especially the mid-infrared (MIR) region, is highly desirable for ultrafast MIR laser applications ranging from tunable MIR coherent sources, MIR supercontinuum generation, and MIR frequency-comb-based spectroscopy to high harmonic generation. However, nonlinear optical effects in 2D layered materials under MIR pump are rarely reported, mainly due to the lack of suitable 2D layered materials. Van der Waals layered platinum disulfide (PtS2) with a sizable bandgap from the visible to the infrared region is a promising candidate for realizing MIR nonlinear optical devices. In this work, we investigate the nonlinear optical properties including third-and fifth-harmonic generation (THG and FHG) in thin layered PtS2 under infrared pump (1550-2510 nm). Strikingly, the ultrastrong third-order nonlinear susceptibility χ(3)(-3ω;ω,ω,ω) of thin layered PtS2 in the MIR region was estimated to be over 10-18 m2/V2, which is about one order of that in traditional transition metal chalcogenides. Such excellent performance makes air-stable PtS2 a potential candidate for developing next-generation MIR nonlinear photonic devices.

7.
Opt Express ; 30(10): 16644-16654, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221502

RESUMO

We demonstrated an organic upconversion device (UCD) successfully converted input NIR light (850-1310 nm) into 524 nm green emission. The UCD under 980 nm light irradiation exhibits a high photon to photon conversion efficiency of 12%. In addition, the linear dynamic range reaches 72.1 dB and the maximum on/off ratio of luminance reaches 4.4×104, which guarantee the clarity of imaging from 850 to 1310 nm. The UCD in this work has the characteristics of high efficiency and long wavelengths detection, and it makes some senses for long wavelengths NIR bio-imaging in further researches.


Assuntos
Diagnóstico por Imagem , Fótons
8.
Front Oncol ; 12: 871662, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646634

RESUMO

Breast cancer is one of the diseases with the highest incidence and mortality among women in the world, which has posed a serious threat to women's health. The appearance of clustered calcifications is one of the important signs of breast cancer, and thus how to classify clustered calcifications comes to be a key breakthrough in controlling breast cancer. In this study, the discriminant model based on image convolution is used to learn the image features related to the classification of clustered microcalcifications, and the graph convolutional network (GCN) based on topological graph is used to learn the spatial distribution characteristics of clustered microcalcifications. These two models are fused to obtain a complementary model of image information and spatial information. The results show that the performance of the fusion model proposed in this paper is obviously superior to that of the two classification models in the classification of clustered microcalcification.

9.
Adv Mater ; 34(33): e2203766, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35749220

RESUMO

Polarization-resolved photodetection in a compact footprint is of great interest for ultraminiaturized polarimeters to be used in a wide range of applications. However, probing the states of polarization (SOP) in materials with natural anisotropy are usually weak, limited by the material's natural dichroism or diattenuation. Here, a twisted unipolar-barrier van der Waals heterostructure (vdWH) to construct a bias-switchable polarization detection for retrieval of full SOP (from 0 to 180°) for linear polarized incident light is reported. As a demonstration example, this study realizes the concept in a b-AsP/WS2 /b-AsP vdWH relying on the natural anisotropic properties of the materials without using additional plasmonic/metasurface nanostructures to realize linear polarimetry in the mid-infrared range. Polarimetric imaging is further demonstrated with the developed linear polarimetry by directly displaying the Jones-vector-described SOP distribution of certain target object. This method, with the capabilities of detecting full linear SOP, is promising for the next-generation on-chip miniaturized polarimeters.

10.
Nanomaterials (Basel) ; 12(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35564100

RESUMO

In recent years, lead selenide (PbSe) has gained considerable attention for its potential applications in optoelectronic devices. However, there are still some challenges in realizing mid-infrared detection applications with single PbSe film at room temperature. In this paper, we use a chemical bath deposition method to deposit PbSe thin films by varying deposition time. The effects of the deposition time on the structure, morphology, and optical absorption of the deposited PbSe films were investigated by x-ray diffraction, scanning electron microscopy, and infrared spectrometer. In addition, in order to activate the mid-infrared detection capability of PbSe, we explored its application in infrared photodetection by improving its crystalline quality and photoconductivity and reducing tge noise and high dark current of PbSe thin films through subsequent iodine treatment. The iodine sensitization PbSe film showed superior photoelectric properties compared to the untreated sample, which exhibited the maximum of responsiveness, which is 30.27 A/W at 808 nm, and activated its detection ability in the mid-infrared (5000 nm) by introducing PbI2, increasing the barrier height of the crystallite boundary and carrier lifetimes. This facile synthesis strategy and the sensitization treatment process provide a potential experimental scheme for the simple, rapid, low-cost, and efficient fabrication of large-area infrared PbSe devices.

11.
Adv Mater ; 33(42): e2102812, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34402548

RESUMO

Infrared upconversion devices (UCDs) enable low-cost visualization of infrared optical signals without utilizing a readout circuit, which is of great significance for biological recognition and noninvasive dynamic monitoring. However, UCDs suffer from inferior photon to photon (p-p) efficiency and high turn-on voltage (Von ) for upconversion operation, hindering a further expansion in highly resolved infrared imaging. Herein, an efficient organic UCD integrating an interfacial exciplex emitter and a well-designed near-infrared (NIR) detector reveals a high efficiency up to 12.92% and a low Von down to 1.56 V. The low Von gives the capacity for detecting weak NIR light down to 3.2 µW cm-2 , significantly expanding the detection power scale of UCDs. Thus, the imaging linear dynamic range (I-LDR) is highly bias-tunable, ranging from 13.23 to 84.4 dB. The high I-LDR enables highly resolved and strong-penetration bioimaging especially for thick biological sections, indicating great potential in noninvasive defect and pathological detection.


Assuntos
Nanopartículas/química , Imagem Óptica/métodos , Compostos Orgânicos/química , Complexos de Coordenação/química , Raios Infravermelhos , Medições Luminescentes , Imagem Óptica/instrumentação
12.
Light Sci Appl ; 9: 167, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042530

RESUMO

The intriguing carrier dynamics in graphene heterojunctions have stimulated great interest in modulating the optoelectronic features to realize high-performance photodetectors. However, for most phototransistors, the photoresponse characteristics are modulated with an electrical gate or a static field. In this paper, we demonstrate a graphene/C60/pentacene vertical phototransistor to tune both the photoresponse time and photocurrent based on light modulation. By exploiting the power-dependent multiple states of the photocurrent, remarkable logical photocurrent switching under infrared light modulation occurs in a thick C60 layer (11 nm) device, which implies competition of the photogenerated carriers between graphene/C60 and C60/pentacene. Meanwhile, we observe a complete positive-negative alternating process under continuous 405 nm irradiation. Furthermore, infrared light modulation of a thin C60 (5 nm) device results in a photoresponsivity improvement from 3425 A/W up to 7673 A/W, and we clearly probe the primary reason for the distinct modulation results between the 5 and 11 nm C60 devices. In addition, the tuneable bandwidth of the infrared response from 10 to 3 × 103 Hz under visible light modulation is explored. Such distinct types of optical modulation phenomena and logical photocurrent inversion characteristics pave the way for future tuneable logical photocurrent switching devices and high-performance phototransistors with vertical graphene heterojunction structures.

13.
Nanotechnology ; 31(6): 064001, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31658451

RESUMO

High responsivity, fast response time, ultra-wide detection spectrum are pursuing goals for state-of-art photodetectors. Cd3As2, as a three-dimensional (3D) Dirac semimetal, has a zero bandgap, high light absorption rate in broad spectral region, and higher mobility than graphene at room temperature. However, photoconductive detectors based Cd3As2 suffer low quantum efficiency due to the absence of high built-in field. Here, a Cd3As2 nanoplate/multilayer MoS2 heterojunction photodetector was fabricated which achieved a quite high responsivity of 2.7 × 103 A W-1 at room temperature. The photodetector exhibits a short response time of in broad spectra region from ultraviolet (365 nm) to short-wavelength-infrared (1550 nm) and reached 65 µs at 650 nm. This work provides a great potential solution for high-performance photodetector and broadband imaging by combining 3D Dirac semi-metal materials with semiconductor materials.

14.
Chem Commun (Camb) ; 55(54): 7812-7815, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31215565

RESUMO

Nitrogen analogues of Chichibabin's and Müller's hydrocarbons, DPh-D and TPh-D, based on 1,2,4-benzotriazinyl (Blatter) were studied. The two diradicaloids with good chemical and thermal stability exhibit smaller singlet-triplet energy gaps (ΔES-T from -1.05 to -1.27 kcal mol-1) than the hydrocarbon diradicaloids with the same bridges.

15.
Molecules ; 24(10)2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096628

RESUMO

We present a p-n-p monolayer graphene photodetector doped with titanium dioxide nanotubes for detecting light from visible to near-infrared (405 to 1310 nm) region. The built-in electric field separates the photo-induced electrons and holes to generate photocurrent without bias voltage, which allows the device to have meager power consumption. Moreover, the detector is very sensitive to the illumination area, and we analyze the reason using the energy band theory. The response time of the detector is about 30 ms. The horizontal p-n-p device is a suitable candidate in zero-bias optoelectronic applications.


Assuntos
Técnicas Biossensoriais , Grafite , Luz , Nanotubos , Titânio , Grafite/química , Nanotubos/química , Nanotubos/ultraestrutura , Análise Espectral , Titânio/química
16.
Adv Mater ; 30(49): e1804020, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30276886

RESUMO

A graphene-semiconductor heterojunction is very attractive for realizing highly sensitive phototransistors due to the strong absorption of the semiconductor layer and the fast charge transport in the graphene. However, the photoresponse is usually limited to a narrow spectral range determined by the bandgap of the semiconductor. Here, an organic heterojunction (C60 /pentacene) is incorporated on graphene to realize a broadband (405-1550 nm) phototransistor with a high gain of 5.2 × 105 and a response time down to 275 µs. The visible and near-infrared parts of the photoresponsivity (9127 A W-1 @650 nm and 1800 A W-1 @808 nm) come from the absorption of the organic layer and the graphene, respectively. For the first time, a bi-directional (positive and negative) photoresponse is demonstrated at different wavelengths, due to the opposite charge transfer direction of the photoexcited carriers enforced by the unique band alignment. Such tunability will enable new functionalities such as large-scale real-time optical image and infrared focal plane array detection in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...